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Abstract— In this paper we study control under input satura-
tion and disturbances of neutrally stable and critically unstable
linear systems. It is shown that a feedback controller can be
designed so that the closed-loop states remain bounded for
disturbances which belong to two different classes depending
on the specific system structure and the equilibrium is globally
asymptotically stable.

I. INTRODUCTION

In this paper, we study the control of linear systems subject
to input saturation and external disturbances.

In the literature dealing with external stability of linear
systems subject to input saturation, the types of disturbances
studied have been classified as input-additive and non-input-
additive. For the input-additive case, simultaneous internal
and Lp stabilization with finite gain for p 2 Œ1; 1� can be
achieved by a nonlinear low-and-high gain state feedback [1],
[4]. In a special case of open-loop neutrally stable systems,
it has been shown that a linear state feedback achieves Lp

stability with finite gain for p 2 Œ1; 1� [2]. On the other
hand, Lp stabilization with finite gain has been shown to be
impossible in the non-input-additive case, but Lp stabiliza-
tion without finite gain is always attainable via a dynamic
low-gain feedback [6]. Moreover, for an open-loop neutrally
stable system, it is attainable via a linear state feedback [5].
Nevertheless, these results only apply to Lp disturbances
for p 2 Œ1; 1/ (i.e., disturbances whose “energy” vanishes
asymptotically), and not to sustained signals belonging to
L1.

For sustained signals that are non-additive, clearly all
disturbances are not manageable as a large constant dis-
turbance could dwarf the saturated control input and lead
to unbounded states. One direction of research has focused
on identifying classes of sustained disturbances for which
a controller can be designed to yield bounded closed-loop
state trajectories. Work along this line has been carried out
by our group in [10], [9], [8], [7]. In that work, a set of
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integral-bounded signals has been defined as

S1 D

(
d 2 L1 j 9M such that 8t2 > t1 > 0;



Z t2

t1

d.t/ dt





 < M

)
:

The set S1 represents signals that have a uniformly bounded
integral over every time interval; that is, signals that have no
sustained DC bias. For neutrally stable systems consisting
only of single integrators (i.e., simple eigenvalues at the
origin), it has been shown that with a suitable choice of
control input, the state trajectories remain bounded for all
integral-bounded disturbances. Moreover, this result also
holds if we add a sufficiently small signal that does not
belong to S1.

The results for single-integrator systems appeared in the
larger context of studying chains of integrators, for which it
was shown in [8] that integral-bounded disturbances can be
handled by an appropriately chosen control law if they are
matched with the input. Moreover, the same control law can
also cope with disturbances that are bounded and misaligned
with input.

In this paper we shall first generalize the results for
single-integrator systems to neutrally stable systems having
complex eigenvalues on the imaginary axis. Roughly speak-
ing, we shall show that for disturbances that do not have
large sustained frequency components corresponding to the
system’s eigenvalues on the imaginary axis, a linear static
state feedback can be employed to achieve boundedness of
the trajectories for any initial condition and at the same time
yield a global asymptotically stable equilibrium.

Furthermore, based on the construction for neutrally stable
systems, we shall extend results to general critically unstable
systems which may have eigenvalues on the imaginary axis
with Jordan block size greater than 1. It will be shown
that disturbances, which may belong to two different classes
depending on which state elements they directly corrupt in a
special Jordan canonical form, can be handled by a properly
designed feedback controller. At the same time, the resulting
closed-loop system is globally asymptotically stable.

The following notations will be used in this paper. Cs

denotes closed left half plane. Cb denotes the imaginary axis.
For x 2 Rn, kxk denotes its Euclidean norm and x0 denotes
the transpose of x. For X 2 Rn�m, kXk denotes its induced
2-norm and X 0 denotes the transpose of X . For continuous-
time signal y, kyk1 denotes it L1 norm. L1.ı/ represent



a set of continuous-time signals whose L1 norm is less than
ı.

The paper is organized as follows: Preliminaries are given
in Section II. Results for neutrally stable systems and criti-
cally unstable systems are respectively presented in Section
III and IV. Some technical results used in the proof are given
in the Appendix.

II. PRELIMINARIES

Consider the following system

Px D Ax C B�.u/ C Ed; x.0/ D x0; (1)

where x 2 Rn, u 2 Rm, d 2 Rp and �.�/ is the standard
saturation function defined as �.s/ D Œ�0.s1/I � � � I �0.sm/�

and �0.si / D sign.si / minf1; jsi jg.
In this paper, we are interested in sustained disturbances,

for which we assume that d 2 L1. We also use L1.ı/ to
denote the set of L1 signals whose L1 norm is less than
ı. Since global asymptotic stabilization is required, it is a
well-known result that system (1) has to be Asymptotically
Null Controllable with Bounded Control (ANCBC), that is
.A; B/ is stabilizable and A has all its eigenvalues in the
closed-left-half plane.

Moreover, the system is said to be neutrally stable if
1) A has all its eigenvalues in the closed-left-half plane;
2) A has at least one eigenvalue on the imaginary axis;
3) those eigenvalues on the imaginary axis are semi-

simple.
The system is said to be critically unstable if

1) A has all its eigenvalues in the closed-left-half plane;
2) A has at least one eigenvalue on the imaginary axis

which has Jordan block size greater than 1.
A system that is neutrally stable or critically unstable can

be decomposed into the following form:�
Pxs

Pxu

�
D

�
As

Au

� �
xs

xu

�
C

�
Bs

Bu

�
�.u/ C

�
Es

Eu

�
d;

where As is Hurwitz stable, Au has all its eigenvalues on
the imaginary axis and .Au; Bu/ is controllable. Since As

is Hurwitz stable and �.�/ and d are bounded, it follows
that the xs dynamics will remain bounded no matter what
controller is used. Therefore, without loss of generality, we
can ignore the asymptotically stable dynamics and assume
in (1) that .A; B/ is controllable and all the eigenvalues of
A are on the imaginary axis.

A. Extended class of disturbances

To present our results, we extend the definition of integral-
bounded disturbances by defining a new set

�1 D

(
d 2 L1 j 9M s. t. 8i 2 1; : : : ; `; 8t2 > t1 > 0;



Z t2

t1

d.t/ej!i t dt





 < M

)
: (2)

where ˙j!i , i 2 1; : : : ; `, represents the eigenvalues of A.
Here we assume that the system has ` different eigenval-
ues (repeated eigenvalues are counted once). The set �1

consists of those signals that remain integral-bounded when
multiplied by sin !i t and cos !i t . This definition is a natural
generalization of S1, since �1 D S1 for !i D 0.

The integral
R t2

t1
d.t/ej!i t dt is easily recognized as the

value at !i of the Fourier transform of the signal d.t/

truncated to the interval Œt1; t2�. The definition of �1 implies
that this value must be uniformly bounded regardless of the
choice of t1 and t2. In practical terms, a signal that belongs
to �1 is a signal that has no sustained frequency component
at any of the frequencies !i , i 2 1; : : : ; `.

B. Preliminary results

We shall need the following inequalities, which were
proven in [5]:

Lemma 1: For two vectors s; t 2 Rm, the following
statements hold:

1) js0Œ�.s C t / � �.s/�j � 2
p

mktk

2) if ktk �
1
2

, then 2s0Œ�.t/ � �.t � s/� � s0�.s/

3) ks � �.s/k � s0�.s/

III. NEUTRALLY STABLE SYSTEMS

We first consider the neutrally stable systems where A only
has semi-simple eigenvalues on the imaginary axis. Without
loss of generality, we can assume that A C A0 D 0. We
shall employ a linear static state feedback u D �B 0x, which
results in a closed-loop system

Px D Ax � B�.B 0x/ C Ed; x.0/ D x0: (3)

It has been proved in [2] that the origin of (3) in the absence
of d is globally asymptotically stable.

In keeping with the results for the single-integrator case,
we shall show in what follows that the trajectories of
the controlled system remain bounded for all disturbances
belonging to �1. Moreover, this result also holds if we add
a sufficiently small signal that does not belong to �1.

A. Single-frequency system

Now we are in position to present the main results of this
paper. We start by considering an example system with a
pair of complex eigenvalues at ˙j :�

Px1

Px2

�
D

�
0 1

�1 0

� �
x1

x2

�
�

�
0

1

�
�.x2/ C

�
e1

e2

�
d: (4)

Theorem 1: The trajectories of (4) remain bounded for
any initial condition and d 2 �1.

We shall only give an outline of the proof. To analyze the
system, we introduce a rotation matrix

R D

�
cos t � sin t

sin t cos t

�
; (5)

which represents a counterclockwise rotation by an angle t .
The dynamics of the rotation matrix is given by

PR D �R

�
0 1

�1 0

�
:



We can then study the dynamics of x from a rotated
coordinate frame y D Rx. The detailed proof can be found
in [7].

To demonstrate the importance of the disturbance be-
longing to �1, we shall now show that if d contains a
large frequency component at ˙j , the states of (4) will
diverge toward infinity for any initial condition. Suppose
therefore that d.t/ D a sin.t C �/, where a is an amplitude
yet to be chosen. For ease of presentation, we assume that
.e1; e2/0 D .0; 1/0. Consider the dynamics of the rotated state
y D Rx where R is given by (5). We have

Py D R

�
0

1

� �
d � �.

�
0 1

�
R0y/

�
D a

�
� sin t sin.t C �/

cos t sin.t C �/

�
� R

�
0

1

�
�.s.t//:

where s.t/ D � sin.t/y1.t/Ccos.t/y2.t/. Using appropriate
trigonometric identities, the dynamics can be rewritten as

Py D
a

2

�
cos.2t C �/ � cos.��/

sin.2t C �/ � sin.��/

�
� R

�
0

1

�
�.s.t//:

We have that either j sin.�/j �
p

2=2 or j cos.�/j �
p

2=2.
Without loss of generality, we assume that j sin.�/j �

p
2=2.

Let a be chosen such that a � 4=
p

2.1 C "/, where " is a
positive number. For the trajectory y2.t/, we have

jy2.t/j D

ˇ̌̌
y2.0/ C

Z t

0

a

2
.sin.2� C �/ � sin.��//

�
�
0 1

�
R.�/

�
0

1

�
�.s.�// d�

ˇ̌̌
:

Noting that the last term of the integrand is bounded by ˙1,
and using the bound ja=2 sin.�/j �

p
2a=4 � 1 C ", we

therefore have

jy2.t/j � �jy2.0/j �
a

2

ˇ̌̌̌Z t

0

sin.2� C �/ d�

ˇ̌̌̌
C

Z t

0

" d�

� �jy2.0/j �
a

2
C "t:

This shows that y2.t/ diverges toward infinity.

B. Connection to the single-integrator case

Before moving on to the case of general multi-frequency
neutrally stable systems, it is instructive to compare some
aspects of the above example with single-integrator systems.
A single-integrator system with a saturated control input and
an external disturbance has the form

Px D �.u/ C ed:

In the absence of disturbances, the open-loop response of this
system is stationary. It is intuitively easy to see that a large
DC bias in d would constitute a problem, because it would
tend to dominate the bounded control term �.�/, thus leading
to divergence. The absence of such a DC bias is guaranteed
by d belonging to S1.

The system with eigenvalues at ˙j has the form

Px D

�
0 1

�1 0

�
x C

�
0

1

�
�.�/ C

�
e1

e2

�
d:

In the absence of disturbances, the open-loop response of
this system is oscillatory rather than stationary, and it is
less obvious why a disturbance that does not belong to �1

may be problematic. By introducing a rotated state y D Rx,
however, we obtain the dynamics

Py D R

�
0

1

�
�.�/ C R

�
0

1

�
d:

In the absence of disturbances, the open-loop response of y

is stationary, and the dynamics of y are strikingly similar
to the single-integrator case. In particular, it is easy to see
that a large DC bias in the term RŒ 0

1 �d would constitute a
problem, because it would tend to dominate the bounded
control term. Analogous to the single-integrator case, the
absence of such a bias is guaranteed if RŒ 0

1 �d belongs to
S1, which is equivalent to d belonging to �1,

In the single-integrator case, a DC bias in d can be
tolerated if it is sufficiently small. Similarly, a small signal
that does not belong to �1 can be tolerated for systems
with complex eigenvalues. This is demonstrated in the next
section, which deals with general multi-frequency systems.

C. Multi-frequency systems

We first extend Theorem 1 to a multi-frequency neutrally
stable system. Consider

Px D Ax � B�.B 0x/ C Ed; x.0/ D x0 (6)

where A C A0 D 0 and .A; B/ is controllable.
Theorem 2: The states of (6) remain bounded for any

initial condition if d 2 �1.
Moreover, a small disturbance which does not belong to

�1 can also be tolerated. Consider the system

Px D Ax � B�.B 0x/ C E1d1 C E2d2; x.0/ D x0 (7)

where A C A0 D 0 and .A; B/ is controllable.
Theorem 3: There exists a ı1 > 0 such that the states

of system (7) remain bounded for all initial conditions if
d1 2 �1 and kd2kL1

� ı1.
Theorem 2 and 3 can be proved by considering a higher di-
mensional rotation matrix R D eA0t and a rotated coordinate
frame y D Rx and using Lemma 3 in the Appendix. The
details are omitted here and can be found in [7].

IV. CRITICALLY UNSTABLE SYSTEMS

A. Formulation

Consider a linear system with input saturation and distur-
bances:

Px D Ax C B�.u/ C Ed; x.0/ D x0 (8)

where .A; B/ is controllable and A has all its eigenvalues
on the imaginary axis. Suppose the eigenvalues of A have q

different Jordon block sizes denoted by n1; :::; nq . Without



loss of generality, we can assume x D .x0
1; x0

2; : : : ; x0
q/0, and

A, B and E are in the following form

A D

266664
NA1 0 � � � 0

0 NA2

: : :
:::

:::
: : :

: : : 0

0 : : : 0 NAq

377775 ; B D

26664
B1

B2

:::

Bq

37775 ; E D

26664
E1

E2

:::

Eq

37775
(9)

where

xi D

2666664
xi;1

xi;2

:::

xi;ni �1

xi;ni

3777775 ; NAi D

266666664

Ai I 0 : : : 0

0 Ai I
: : :

:::
:::

: : :
: : :

: : : 0
:::

: : : Ai I

0 � � � � � � 0 Ai

377777775
 

ni �ni blocks

;

Bi D

2666664
Bi;1

Bi;2

:::

Bi;ni �1

Bi;ni

3777775 ; Ei D

2666664
Ei;1

Ei;2

:::

Ei;ni �1

Ei;ni

3777775 ;

(10)

xi;j 2 Rpi with n D
Pq

iD1 ni pi and A0
i CAi D 0. Note that

the above form can be obtained by assembling together in
the real Jordan canonical form those blocks corresponding
to eigenvalues with the same Jordan block size.

We say the disturbance d is aligned if Ei;ni
¤ 0 for

some i D 1; : : : ; q and misaligned if Ei;ni
D 0 for all i D

1; : : : ; q.
Without loss of generality, for any critically unstable sys-

tem with input saturation and non-input-additive disturbances
as given by (8), (9) and (10), we can equivalently rewrite the
system in the following form

Px D Ax C B�.u/ C NE1d1 C NE2d2 C NE3d3; (11)

with x.0/ D x0. In the above system, d1 is misaligned
and contains arbitrary disturbances that belong to L1, d2

contains all aligned disturbances belonging to �1 and d3

contains aligned disturbances which do not belong to �1

but are sufficiently small. The system data A and B are given
by (9) and (10). The NE1, NE2 and NE3 are in the form

NE1 D

26664
NE1;1

:::
NE1;q�1

NE1;q

37775 ; NE1;i D

26664
Ei;1

:::

Ei;ni �1

0

37775 (12)

and

NEj D

26664
NEj;1

:::
NEj;q�1

NEj;q

37775 ; NEj;i D

26664
0
:::

0

E
j
i;ni

37775 ; j D 2; 3: (13)

B. Controller design

In parallel with the results for the chain of integrators, we
shall show that if the disturbances are aligned and belong to
�1 or misaligned and belong to L1, a controller can be
designed such that the states of closed-loop system remain
bounded for any initial condition while yielding a globally
asymptotically stable equilibrium. For neutrally stable sys-
tem, we have shown that this can be achieved by a linear
state feedback. However, a nonlinear feedback controller is
generally needed for critically unstable systems. In what
follows, we present a nonlinear dynamic low-gain state
feedback design methodology which solves our problem.

Let .A; B/ satisfy the assumptions made in the preceding
section and P."/ > 0 be the solution to a Continuous
Parametric Lyapunov Equation (CPLE)

A0P."/ C P."/A � P."/BB 0P."/ C "P."/ D 0: (14)

The following lemma is proven in Appendix.
Lemma 2: Let P."/ be the solution to CPLE (14) associ-

ated with A and B given by (9) and (10). For any matrix NE1

in the form of (12), there exists M such that for " 2 .0; 1�

NE 0
1P."/ NE1 � M"2I

We will construct a low-gain dynamic state feedback
controller. The controller as given below has q states that
will transiently replace the evolution of the bottom states of
each Jordan block NAi in generating feedback input into the
system. �

POxi D Ai Oxi C Bi;ni
�.�B 0P."/ Nx/;

u D � OB 0.xb � Ox/ � B 0P."/ Nx;
(15)

for i D 1; : : : ; q where,

OB D

26664
B1;n1

B2;n2

:::

Bq;nq

37775 ; xb D

26664
x1;n1

x2;n2

:::

xq;nq

37775 ; Ox D

26664
Ox1

Ox2

:::

Oxq

37775 ;

and

Nx D

26664
Nx1

:::

Nxq�1

Nxq

37775 ; Nxi D

26664
xi;1

:::

xi;ni �1

Oxi

37775 :

Note that Nx is the system state x with bottom state segment
xi;ni

of each Jordan block NAi replaced by controller states
Oxi . The feedback input is generated based on Nx instead of
x. As will become clear in the proof, the underlying idea
behind (15) is that by utilizing the states of controller and
the property of �1, we will be able to convert some aligned
disturbances affecting the bottom states into misaligned
disturbances which turns out to be less restricted.

Let P."/ be the solution to CPLE (14) and let " be
determined by

" D "a. Nx/ WD maxfr 2 Œ0; 1� j

. Nx0P.r/ Nx/ trace.B 0P.r/B/ � ı2
g (16)



where ı D
1
4

. It has been shown in [3] that scheduling
(16) guarantees that kB0P."a. Nx// Nxk � ı for all Nx. Note
that the scheduling of the parameter "a. Nx/ is a convex
optimization problem but requires online solving CPLE (14)
and can be computationally demanding for large systems. In
a special case where the system has a single input, P."/ is
a polynomial matrix and can be solved easily and explicitly
in a finite recursion. In such a case, "a. Nx/ is not difficult to
obtain (see [11])

C. Main results for critically unstable systems

Theorem 4: Consider the system (11) with controller (15).
We have that

1) in the absence of d1, d2 and d3, the origin is globally
asymptotically stable;

2) there exists a ı1 > 0 such that the state remains
bounded for any initial condition x0 and disturbances
d1 2 L1, d2 2 �1, d3 2 L1.ı1/ (continuous time).

Proof: Define

Qx D xb � Ox D

26664
x1;n1

� Ox1

x2;n2
� Ox2

:::

xq;nq
� Oxq

37775 :

We have that

PQx D OA Qx C OB�.� OB 0
Qx � B 0P."a. Nx// Nx/

� OB�.�B 0P."a. Nx// Nx/ C OE2d2 C OE3d3;

where

OA D

26664
A1

A2

: : :

Aq

37775 ; OEj D

266664
E

j
1;n1

E
j
2;n2

:::

E
j
q;nq

377775 ; j D 2; 3:

(17)

OE2d2 and OE3d3 contain all the aligned disturbances that
affect the bottom states of each Jordan block NAi . Note that
.A; B/ is controllable implies that . OA; OB/ is controllable.
Moreover, OAC OA0 D 0. To simplify our presentation, we will
denote P."a. Nx// by P since the dependency on the scaling
parameter should be clear from the context. The closed-loop
system can be written in terms of Qx; Nx as8̂̂̂<̂

ˆ̂:
PNx D A Nx C B�.�B 0P Nx/ C NE1d1 C I Qx

C NB
h
�.� OB 0 Qx � B 0P Nx/ � �.�B 0P Nx/

i
PQx D OA Qx C OB�.� OB 0 Qx � B 0P Nx/

� OB�.�B 0P Nx/ C OE2d2 C OE3d3;

(18)

where NB is the same as B in (9) and (10) with Bi;ni
blocks

set to zero and

I D

26664
I1

I2

:::

Iq

37775 ; Ii D

2666664
0
:::

0
NIi

0

3777775 ; NIi D Œ0 � � � I
"

i th block

� � � 0�

It should be noted that NB , NE1 and I are all in the form
of (12). We first prove global asymptotic stability without
disturbances. Consider the dynamics of Qx. Let v D �B 0P Nx.
Our scheduling (16) guarantees that kvk � ı �

1
2

for any Nx.
Then,

PQx D OA Qx C OB�.� OB 0
Qx C v/ � OB�.v/:

and define a Lyapunov function as V1 D Qx0 Qx. Differentiating
V1 along the trajectories yields

PV1 D 2 Qx0 OBŒ�.� OB 0
Qx C v/ � �.v/�:

Since kvk �
1
2

, we have that

PV1 � � Qx0 OB�. OB 0
Qx/:

Since Qx has a bounded derivative, by Barbalat’s Lemma,
this yields that limt!1

OB 0 Qx.t/ D 0 which implies that there
exists T0 such that we have k OB 0 Qx.t/k �

1
2

for t � T0 and
hence

PQx D . OA � OB OB 0/ Qx

and since this system matrix is Hurwitz stable, we have
Qx.t/ ! 0 as t ! 1. For t > T0, we have that

PNx D A Nx C B�.�B 0P Nx/ C NI Qx

where NI D I � NB OB 0. Define V2 D Nx0P Nx and a set

K D

n
Nx j V2. Nx/ �

ı2

trace.B0P.1/B/

o
:

It can be easily seen from (16) that for Nx 2 K, "a. Nx/ D 1.
Next, consider the derivative of V2,

PV2 D �"V2 � Qx0PBB 0P Qx C 2 Nx0P NI Qx C Nx0 dP
dt

Nx

� �"V2 C 2 Nx0P NI Qx C Nx0 dP
dt

Nx

� �"V2 C 2
p

V2kP 1=2 NI Qxk C Nx0 dP
dt

Nx:

Note that I, NB and hence NI are in the form of (12). Lemma
2 shows that there exists an M such that

kP 1=2 NI Qxk D

p
Qx0 NI 0P NI Qx � "

p
M k Qxk:

We use here that Lemma 2 holds for any matrix of the form
(12) so it also holds for NE1 replaced by NI. Hence

PV2 � �"V2 C 2"
p

M k Qxk
p

V2 C Nx0 dP
dt

Nx

� �"
p

V2

hp
V2 � 2

p
M k Qxk

i
C Nx0 dP

dt
Nx:

Since Qx ! 0, there exists a T1 > T0 such that for t � T1,

k Qxk �
ı

4
p

M
p

trace.B0P.1/B/
:

Therefore, for t � T1 and Nx … K we havep
V2 � 2

p
M k Qxk �

p
V2

2

and thus
PV2 � �

"
2
V2 C Nx0 dP

dt
Nx:

Since PV2 cannot have the same sign as Nx0 dP
dt

Nx (see [1]), we
conclude that PV2 < 0 for Nx … K and t > T1. This implies
that Nx will enter K within finite time, say T2 > T1, and
remain in K thereafter. For t > T2 and Nx 2 K, we have



"a. Nx/ D 1 and k OB 0 Qxk �
1
2

. All saturations are inactive and
the system becomes�

PNx D .A � BB 0P.1// Nx C NI Qx;
PQx D . OA � OB OB 0/ Qx:

The global asymptotic stability follows from the properties
that OA � OB OB 0 and A � BB 0P.1/ are Hurwitz stable. We
proceed to show the boundedness of trajectories in presence
of d1 and d2. Define

R D e
OA0t and y D R Qx:

Note that since OA C OA0 D 0, R defines a rotation matrix.
Moreover, we have that PR D �R OA. We obtain that

Py D R OB�.� OB 0R0y C v/ � R OB�.v/ C R OE2d2 C R OE3d3

with y.0/ D Qx0 where v D �B 0P Nx. Let Ny satisfy

PNy D R OE2d2; Ny.0/ D Qx0:

Since d2 2 �1, we find that Ny 2 L1 . Define Qy D y � Ny.
Then

PQy D R OB�.� OB 0R0
Qy � OB 0R0

Ny C v/ � R OB�.v/ C R OE3d3

with Qy.0/ D 0. Again define z D R0 Qy. We get

Pz D OAzC OB�.� OB 0z� OB 0R0
NyCv/� OB�.v/C OE3d3; z.0/ D 0;

Consider an auxiliary system

Pw D . OA C OB OF /w C OE3d3; w.0/ D 0;

where OF is such that OAC OB OF is Hurwitz stable. For a selected
OF , let ı1 be sufficiently small such that kd3kL1

� ı1 implies
that kF wkL1

� 1=4.
Let � D z � w. We have that

P� D OA� C OB�.� OB 0� C u/ � OB�.v/ � OB OF w; �.0/ D 0;

where u D � OB 0w � OB 0R0 Ny C v. Since u 2 L1 and k�.v/ C

OF wkL1
� 1=4 C 1=4 D 1=2, it follows from Lemma 3 in

the appendix that � 2 L1. This implies that Qx 2 L1.
Consider the dynamics of Nx

PNx D A Nx C B�.�B 0P Nx/ C NB� C NE1d1 C I Qx

where � D �.� OB 0 Qx � B 0P Nx/ � �.�B 0P Nx/. Since �.�/ is
globally Lipschitz with Lipschitz constant 1, we have that
k�k � k OB 0 Qxk and thus � 2 L1.

By differentiating V2 D Nx0P Nx, we obtain

PV2 � �"V2 C 2x0P NE1d1 C 2x0PI Qx C 2 Nx0P NB� C Nx0 dP
dt

Nx

� �"V2 C 2
p

V2kP 1=2 NE1d1k C 2
p

V2kP 1=2 NB�k

C 2
p

V2kP 1=2I Qxk C Nx0 dP
dt

Nx:

We have already shown in Lemma 2 that there exist M1, M2

and M3 such that

kP 1=2 NE1d1k � "
p

M1kd1k; kP 1=2 NB�k � "
p

M2k�k

and kP 1=2I Qxk � "
p

M3k Qxk:

We obtain,

PV2 � �"
p

V2

hp
V 2 � 2

p
M1kd1k1 � 2

p
M3k Qxk1

� 2
p

M2k�k1

i
C Nx0 dP

dt
Nx:

If
p

V2 � 2
p

M1kd1k1 C 2
p

M3k Qxk1 C 2
p

M2k�k1, we
have

PV2 � Nx0 dP
dt

Nx:

Since PV2 and Nx0 dP
dt

Nx can not have the same sign, we find
that PV2 � 0 for

Nx 2

n
Nx j

p
V2 � 2

p
M1kd1k1C2

p
M3k Qxk1C2

p
M2k�k1

o
;

which, from the property (4) of scheduling (16), implies that
Nx 2 L1 and hence x 2 L1.

APPENDIX

The following Lemma is adapted from [2].
Lemma 3: Assume that .A; B/ is controllable and A C

A0 D 0. There exists ı0 such that the system

Px D Ax � B�.B 0x C u/ � v; x.0/ D 0

satisfies that x 2 L1 for u 2 L1 and v 2 L1.ı0/.
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